l’effetto del lunedì – 01 – Magnus (continuazione del martedì)

(segue)

L’articolo The spinning ball spiral, come si accennava, risponde anche agli appassionati di altri sport, presentando una sintetica risposta alla domanda del generico sportivo: “Vedrò mai l’effetto Magnus nel mio sport?”. Ciò, tuttavia, non prima di aver dato qualche riferimento in merito ai precedenti studi compiuti in materia.

Tra i precursori di Magnus vi sono nomi eccelsi: sarebbe stato lo stesso sir Isaac Newton a descrivere per primo questo effetto nel 1672, osservando, manco a dirlo, alcuni giocatori di tennis. Una settantina di anni dopo l’ingegnere del genio inglese Benjamin Robins avrebbe ricondotto le deviazioni di alcune traiettorie di proiettili all’effetto Magnus. A 180 anni dall’intuizione di Newton, nel 1852, sarebbe stato un chimico tedesco, Heinrich Gustav Magnus (1802-1870), a fornire dati sperimentali sul fenomeno tali da farlo associare al proprio nome. Clanet e colleghi non dimenticano di citare un altro nume tutelare degli studi di fluidodinamica e aeronautica: Gustave Eiffel. Non si ricorda di certo Gustave Eiffel per i propri studi in questo campo, eppure questa disciplina fu – ed è – fondamentale per la progettazione (iniziata nel 1863) di una enorme macchina qual è la torre che da lui prende il nome, sottoposta all’azione di forti venti, tanto più sferzanti quanto più ci si sposta verso la sommità della costruzione.

Ma veniamo al punto: verso il termine dell’articolo si riporta una tabella che dà un’idea dei numeri in gioco non solo nel caso del calcio, ma anche nel caso di alcuni altri sport. La seconda colonna della tabella mostra la velocità iniziale, ossia quella al momento del colpo, espressa in metri al secondo (10 metri al secondo equivalgono a 36 km/h); la terza riporta la lunghezza in metri del campo di gioco o, come nel caso del baseball, la distanza tra lanciatore e battitore; la quarta colonna è una misura legata alla densità della palla, ed esprime grosso modo che distanza occorre per vedere il pieno attuarsi dell’effetto Magnus, con il verificarsi di effetti imprevedibili; infine, la quinta colonna esprime, sulla base di ulteriori condizioni specifiche per ciascuno sport, a che distanza si può vedere una prima curvatura rispetto alla traiettoria rettilinea che la palla o il pallone dovrebbe seguire.

La tabella mostra dei casi estremi: quello del tennis tavolo, nel quale la particolare conformazione della pallina permette di tracciare curve che si manifestano a un solo metro di distanza dal punto di impatto, e quelli della pallacanestro e della pallamano, per i quali l’effetto Magnus, vuoi per la modesta velocità in gioco (in particolare per la pallacanestro), vuoi per il peso e la densità del pallone, non si verifica per alcuna distanza.
Per gli altri sport la curvatura della traiettoria inizia a manifestarsi a una distanza di 5-7 metri dal punto dell’impatto: i conti tornano rispetto al tiro di Roberto Carlos.
Similmente, nel caso della pallavolo è esperienza comune vedere battute al salto che si abbassano rispetto alla traiettoria prevedibile già in prossimità della rete. L’effetto Magnus deriva dalla rotazione (con buona pace di Caressa) impressa dalla mano dell’atleta, che “lavora” la palla dal basso verso l’alto e poi avanti, imprimendo uno spin tale per cui, chi guarda un battitore dalla sua destra vedrà la palla ruotare in senso orario.
Rispetto alla tabella compilata dagli autori dell’articolo, si può aggiungere che la velocità iniziale della palla può essere superiore ai 20 metri al secondo ipotizzati nella seconda colonna, ed essendo l’effetto Magnus beneficamente influenzato dalla velocità iniziale, si ha che esso si può verificare con maggiore facilità.

Quando manca l’effetto Magnus, o addirittura la rotazione è contraria a quella normalmente impressa, la traiettoria…

In qualche caso l’effetto Magnus non ha modo di verificarsi, vista la distanza percorsa dal pallone abbondantemente al di sotto dei 5 metri (si può forse parlare di effetto Marshall?):

Per chi vuole saperne di più, nell’articolo Christophe Clanet dice che tutte le comunicazioni (si suppone anche richieste di informazioni e chiarimenti) dovrebbero essere indirizzate a lui: clanet@ladhyx.polytechnique.fr… altrimenti ci sono i commenti.

20 – la hybris dei primi volatori

La tecnologia del volo si è affermata da non più di un secolo, sebbene i tentativi da parte dell’uomo in questo senso datino dalle epoche più remote.
Nella mitologia greca Icaro spiccò il volo con ali costruite con penne di uccello tenute insieme da cera, peccando di hybris, ovvero presunzione nel voler modificare lo stato naturale delle cose (sacro per definizione per gli antichi Greci), e il destino non gli sorrise.
Ruggero Bacone teorizzò una “sfera cava di rame” riempita con aria calda (hollow globe of copper […] filled with aetherial air or liquid fire): intuì la possibilità di rendere l’aria rarefatta, riscaldandola, affinché potesse galleggiare in aria più densa, ma le sue idee non furono prese in considerazione.
Nel Medioevo si tentò la via della propulsione per mezzo di razzi ma non si fronteggiarono ancora adeguatamente i tre problemi fondamentali legati al volo con mezzi più pesanti dell’aria: la spinta, la geometria del mezzo idonea alla partenza e il controllo in fase di volo.
Anche in questo campo Leonardo è l’icona dell’approccio riduzionista, per la sua propensione a scomporre in minuziose funzioni la tecnica del volo per imitare il movimento naturale degli uccelli; l’idea dell’ala battente si manterrà viva anche in tempi successivi, ma di fatto, un secolo e mezzo dopo, Giovanni Alfonso Borrelli, nel De motu animalium (1680), e Robert Hooke dimostrarono che il tentativo di imitare la natura nel volo era vano: si resero conto che la costituzione della muscolatura umana è inadatta al volo e il peso dell’apparato scheletrico è eccessivo (i volatili hanno le ossa cave, quindi molto leggere). L’ultimo barlume di speranza lo accese Lilienthal, che con i suoi alianti non solo tentò il volo umano, ma diede aiuto notevole agli stessi fratelli Wright.
Nel novembre 1783, i fratelli Montgolfier, industriali della carta, si librarono nel cielo con un pallone aerostatico, che da loro prese il nome. Il globo era fatto di carta sottile alternata a seta, tessuto di elevata resistenza a trazione, usato anche per giubbotti antiproiettile e armature (xiii-xiv secolo in Corea); la mongolfiera arrivò fino a mille metri di altezza. L’obiettivo di questo celeberrimo evento era quello di spettacolarizzare la scena, adibita per stupire lo spettatore.
Nel dicembre dello stesso anno, Jacques-Alexandre-César Charles, al quale si deve la legge omonima dei gas, ascese fino a 550 metri con la sua “charlière”. Questo nuovo pallone era composto da un materiale innovativo: veniva impregnata la seta imbevuta in una soluzione di trementina (un idrocarburo estratto dalle conifere) e lattice del caucciù. Una volta evaporato il solvente si otteneva una superficie impermeabile e dalle caratteristiche di resistenza alla trazione ancora incrementate.
Come in molti altri casi, allo stato prematuro una tecnologia assuma la stessa matrice (in questo caso il pallone), per poi dipanarsi in diverse ramificazioni atte farla evolvere (la diversificazione dei materiali).
Dalla fine del xviii secolo si iniziarono ad approfondire gli studi sulla fluidodinamica: fino ad allora, Torricelli, Newton, Pitot, Bernoulli ne avevano stabilito i fondamenti; Eulero si occupava solo del fluido in moto in un condotto fisso. Va menzionato il tubo di Pitot, strumento per misurare la velocità dell’acqua, che sarà il fulcro di studi successivi: era congeniato per quantificare il fluido che penetrava all’interno di un tubo muovendosi con moto laminare e velocità prefissata; il flusso è parallelo all’imboccatura di uno dei due tubi dello strumento, e il fluido non vi entra; il flusso è invece perpendicolare a quella dell’altro; il fluido riempirà il tubo di un dislivello che, confrontato con quello “a riposo” potrà fornire un’idea della velocità del flusso.
George Cayley nella sua opera On aerial navigation (1809) definì per la prima volta i cardini dell’aerodinamica, ossia “portanza” e “resistenza” di un corpo in moto relativo con il fluido dentro il quale è immerso. Da notare il termine navigation, con il quale si fa diretto riferimento al moto mezzo-fluido più semplice e conosciuto fino ad allora: la nave sull’acqua.
Nel xix secolo si cercò di perseguire la strada del pallone aerostatico con l’ausilio di svariate tipologie di propulsori: dal dirigibile governato da braccia umane, a quello spinto da un motore a vapore (1852, Giffard), poi a gas (1872, Haenlein), ed infine elettrico (1884, Renard e Krebs). Il solito problema che sussisteva ancora era quello della spinta: il mezzo non doveva sempre essere un “razzo-vettore”, ma si doveva anche sostenere in modo autonomo.

16 – padroni dell’acqua

Il problema dell’energia è antico quasi quanto l’uomo, o almeno da quando l’uomo si dotò delle proprie appendici tecnologiche. Da sempre l’uomo ha cercato una fonte di energia per evitare una fatica o per sopperire all’insufficienza della propria forza.
L’acqua è stata ed è tuttora una delle più efficaci fonti di energia dalla quale l’uomo ha tratto supporto e profitto, ma prima dell’utilizzo a fini energetici, egli dovette risolvere il problema di attingere, distribuire e razionalizzare tale risorsa in modo da renderla utilizzabile.
In Medio Oriente, almeno dal i sec. a.C., fu utilizzato un sistema circolare che attraverso il ribaltamento ciclico di scodelle (il cosiddetto sistema “a norie”) permetteva il trasporto dell’acqua da un livello a un altro. Da allora, pur con l’apporto della tecnologia idrica dei Romani, gli avanzamenti furono pochi ma soprattutto, eccezion fatta per una crescente capacità di derivazione di canali da un corso d’acqua.
Una rilevante accelerazione si ebbe nel periodo rinascimentale, con i primi tentativi di quantificazione numerica delle risorse idriche; ciò avvenne proprio in Italia perché la penisola era (e rimane) molto più scarsamente rifornita di acqua rispetto ai paesi del Nord Europa: l’acqua era un bene, poiché, essendo limitato, era suscettibile di valutazione economica.
La prima macchina che consentì di sfruttare l’energia cinetica di un corso d’acqua in energia fu il mulino. Si hanno testimonianze di mulini ad acqua sin dal i sec. a.C., in epoca romana, e la tecnologia dei mulini non cambiò di molto sino a tutto il Medioevo.
Il funzionamento era basato sul flusso continuo e unidirezionale di un corso d’acqua che con il suo scorrere metteva in rotazione le pale del mulino. La trasmissione del moto della ruota avveniva per mezzo di ruote dentate.
Una prima forma di evoluzione, che non fosse solamente circoscritta a ottimizzare le prestazioni del mulino in sé, fu quella di mettere quasi in serie e in parallelo più mulini, l’uno in prossimità all’altro.
Un esempio di quest’evoluzione sono certamente i mulini di Barbegal. Il complesso risale agli inizi del iv secolo d.C. Posto su di un pendio, era composto da due serie parallele di otto ruote alimentate da due canali derivati dall′acquedotto di Arles. Le ruote idrauliche avevano un diametro di 2,7 m. Un carrello che si muoveva su un piano inclinato consentiva di far salire e scendere i carichi attraverso un meccanismo idraulico.
Quest′impianto consentiva una capacità di macinazione complessiva di 4 tonnellate di farina al giorno, sufficienti al fabbisogno di una popolazione di più di 10.000 abitanti, la popolazione di Arles a quel tempo.
Il primo campo nel quale fu impiegata la forza meccanica ottenuta dalla trasformazione dell’energia cinetica dell’acqua in lavoro fu la macinazione del grano.
Nel palmento mobile (mosso da una ruota dentata mossa a sua volta dalla ruota ad acqua) si ha un foro centrale attraverso cui cade il grano da macinare. Quando il palmento mobile si appoggia a quello fisso e si mette in moto, si sgretola il chicco; la farina scende attraverso le scanalature fuoriuscendo all’interno della cassa. Si può già dunque ben capire che l’ordine di accuratezza operativa di questo tipo di macchine, e specialmente nei palmenti, è comparabile alla dimensione di un chicco di grano o anche molto inferiore; si tratta di un caso di gestione della precisione pur ancora all’interno del paradigma del pressappoco.
Man mano che l’evoluzione tecnica va avanti si trovano sempre nuove applicazioni per il mulino. La fucina dei metalli fu la seconda grande applicazione della forza dell’acqua. La ruota a pale fa girare l’albero principale sul quale sono infissi cavicchi di legno che nella rotazione si appoggiano sulla coda del braccio del maglio, sollevandolo. Quando il cavicchio continua la rotazione, l’asta e il maglio alla sua estremità cadono sopra l’incudine sul ferro incandescente. La velocità delle battute dipende dalla ruota a pale e dalla velocità dell’acqua che le colpisce.
Col crescere delle esigenze e delle possibili applicazioni bisognava anche far fronte a problemi logistici sempre più articolati. Da semplici deviazioni di corsi d’acqua, i canali divennero oggetto di ingegnerizzazione e parte integrante del tessuto urbanistico e “industriale”.
A Torino, sin dal 1580 Emanuele Filiberto trasformò buona parte delle segherie in macine adibite alla produzione di polvere da sparo per evitare una dipendenza quasi totale dalle forniture estere: nacque così la Regia Fabbrica delle Polveri e Raffineria dei Nitri, che doveva essere alimentata in modo costante da un corso d’acqua di dimensioni sufficienti. Tuttavia, già dal 1717 lo stabilimento fu dotato di una macina mossa da cavalli che permetteva di non subordinare il funzionamento degli impianti alle discontinue piene della Dora.
Con l’aumentare degli ostacoli e delle esigenze, con l’accrescersi della volontà di rendere sempre migliori le prestazioni delle macchine alimentate dalla risorsa idrica, si verificò un ragguardevole sviluppo di due discipline: l’idraulica e la termodinamica, con la conseguente meccanica delle macchine a vapore.
Il rinnovo dell’idraulica vide i suoi principali interpreti in Edme Mariotte, Isaac Newton e Daniel Bernoulli, che si occuparono di studi di vario genere, compresi alcuni di grande importanza sulla geometria delle pale.
Il perfezionamento principale non fu dovuto al lavoro teorico degli scienziati, ma a esperimenti su modelli ridotti (John Smeaton nel 1762 e 1763 e Jean-Charles de Borda nel 1767).
All’inglese Smeaton si dovette l’aumento regolare dei rendimenti dei motori idraulici tra il 1750 e il 1780. Il xviii secolo fu il periodo in cui si ebbero i principali progressi nel campo.

14 – Galileo e il libro della natura

Galileo Galilei nacque nel 1564 a Pisa e morì ad Arcetri (PI) nel 1642. Dapprima studiò medicina nella città natale assecondando le volontà paterne, salvo poi orientarsi verso le discipline matematiche, ottenendo prima un posto di lettore nello Studio pisano e poi una cattedra all’università di Padova. Le opere di Galileo, a differenza di quelle di Leonardo, sono state pubblicate; ciò le ha esposte alla valutazione di una comunità di studiosi, con tutto ciò che ne conseguì per la vita dello scienziato pisano.
Galileo affrontò una molteplicità di temi, che spazia dalla cinematica alla cosmologia, dalla balistica alla fluidodinamica; rimanendo nell’ambito della cinematica, la leggenda vuole che Galileo si interessasse allo studio del pendolo osservando dapprima il movimento del lampadario situato all’interno della cattedrale di Pisa, e successivamente deducendone l’isocronismo delle oscillazioni.

Tra le opere di maggiore importanza di Galileo si hanno:
De motu, 1590 ca. (mai pubblicata, nella quale Galileo afferma, contro Aristotele, che il peso è una qualità intrinseca dei corpi e che la leggerezza è solo una proprietà relativa);
Sidereus Nuncius, 1610 (nel quale Galileo inizia a tracciare la propria teoria cosmologica);
Discorso intorno alle cose che stanno in su l’acqua, 1612;
Istoria e dimostrazioni intorno alle Macchie Solari, pubblicato dall’Accademia dei Lincei, 1613;
Discorso sopra il flusso e il reflusso del mare, Roma, 1615;
Discorso delle Comete, 1619 (dove si rende conto delle apparizioni di tre comete nell’anno 1618, e si tenta di dare un’interpretazione sulla natura di queste, per concludere che il sistema tolemaico non spiega in modo preciso i moti dei corpi celesti);
Il Saggiatore, 1623 (in cui continuò la polemica con il gesuita Orazio Grassi in merito alla natura delle comete);
Dialogo di Galileo Galilei sopra i due Massimi Sistemi del Mondo Tolemaico e Copernicano, Firenze, 1632, in cui espose il principio di relatività e il suo metodo per determinare la velocità della luce;
Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica et i movimenti locali, Leida, 1638 (pubblicato in Olanda, tratta le leggi del moto e la struttura della materia. Si tratta di un’opera tarda, scritta da un Galileo vecchio, ma è forse la sua opera più importante);
– è infine del 1613 la lettera di Galilei a padre Benedetto Castelli (autore di una celeberrima Della natura delle acque correnti, 1628), nella quale Galileo espone la propria idea in merito al valore metafisico delle Sacre Scritture, da contrapporsi al valore fisico delle scoperte dell’uomo. Tale lettera fu l’inizio delle procedure che porteranno in ultima analisi Galileo all’abiura.

La novità introdotta da Galileo riguarda l’adozione del momento pratico come fondamentale nella dimostrazione della coerenza con il mondo fisico di una teoria scientifica; la prova pratica è il metro che definisce se una teoria è valida o meno. Galileo, nonostante non avesse a disposizione strumenti per la misurazione del tempo (non si deve peraltro a lui, ma a Huygens, la prima applicazione del pendolo a un orologio), sfruttò la sua passione per la musica prendendo come scansione temporale il battito del cuore o il battito delle mani, come nel caso degli esperimenti di rotolamento di bilie su di un piano inclinato.
Proprio in questo caso Galileo diede prova della coniugazione di pratica e teoria, prima intuendo e poi sperimentando che il piano inclinato era un modello utile allo studio della caduta dei gravi, ma che permetteva un allungamento del tempo di caduta di un fattore pari al seno dell’angolo formato dal piano inclinato rispetto all’orizzontale. Riuscì a ottenere la relazione che lega la velocità finale del corpo in discesa con parametri legati all’angolo, alla lunghezza del piano e all’accelerazione di gravità, sintetizzando il tutto nella formula v = [2gl * sen(theta)]^(1/2). Da notare come la relazione tra lunghezza del piano e velocità finale (o tra tempo trascorso e spazio percorso) non è lineare, ma quadratica. La misura di questa relazione fu possibile a Galileo ponendo dei campanelli lungo il piano inclinato al fine di ottenere un intervallo di tempo costante tra i passaggi della bilia in corrispondenza dei campanelli medesimi. Conseguenza accessoria di questi studi fu l’esportazione del concetto di piano inclinato alla vite, definendo appunto questa come formata da un piano inclinato “arrotolato” intorno ad un cilindro.

Galileo ebbe, tra gli altri, il merito di utilizzare per primo, con finalità di osservazione astronomica, uno strumento come il cannocchiale, perfezionato all’inizio del xvii secolo in Olanda, che sino a quel momento era stato utilizzato poiché capace di “ingrandire le cose”, ma rivolgendolo sempre all’osservazione di oggetti piccoli e vicini. Galileo lo diresse in alto, sin dal 1609, quando ne venne a conoscenza e se ne fece produrre uno. Osservò anzitutto la luna e gli altri pianeti, ed è grazie a questo strumento, e a un’attenta osservazione notturna, che si rese conto delle imperfezioni della superficie lunare scoprendo su di essa dei crateri.

Cadeva così la teoria della sfericità e della perfezione della luna: se sino a quel momento tutto ciò che era imperfetto, terra compresa (per quanto centrale nell’universo), era “sublunare”, nel senso che le sfere celesti concentriche contenevano corpi per definizione perfetti, con le osservazioni di Galileo l’imperfezione si estese, comprendendo la luna, e anche il sole (lo scienziato pisano compì osservazioni anche sulle macchie solari).
Confidando nelle possibilità concessegli da papa Urbano viii, Galileo pubblicò nel 1623 Il saggiatore, e se da un canto rimase celebre la sua disputa con il padre gesuita Orazio Grassi, in merito alla natura delle comete (argomento, peraltro, sul quale Galileo formulerà un giudizio che si sarebbe rivelato erroneo), dall’altro le sue teorie sovversive rispetto a quelle ritenute valide dalla chiesa iniziarono ad attirargli le attenzioni dell’Inquisizione, sino a portarlo al processo. Come noto, lo scienziato fu costretto all’abiura, ossia al rigetto della parte delle teorie che tanto scandalo creò presso l’istituzione ecclesiastica. Negli ultimi anni della propria vita Galileo visse appartato, nella sua casa di Arcetri, pur continuando i suoi esperimenti e le sue speculazioni sul mondo fisico.

Galileo si interessò anche allo studio del moto dei proietti, pur non disponendo del concetto di forza introdotto 50 anni dopo da Newton; ugualmente Galileo tenne in considerazione il cosiddetto impetus di memoria medievale, arrivando a dare l’utilissima formulazione per la quale il moto di un proiettile può essere scomposto in una componente orizzontale e una verticale, dettata dalla gravità.